Installing an Activated Carbon Sediment Amendment at the Puget Sound Naval Shipyard & Intermediate Maintenance Facility, Bremerton, WA

Presentation for Seventh International Conference on Remediation of Contaminated Sediments. February 4-7, 2013, Dallas, TX

Installing an Activated Carbon Sediment Amendment at the Puget Sound Naval Shipyard & Intermediate Maintenance Facility, Bremerton, WA

Robert K. Johnston (johnston@spawar.navy.mil), Victoria Kirtay, D. Bart Chadwick, Gunther Rosen, and Joel Guerrero (Space and Naval Warfare Systems Center Pacific, San Diego, CA);
John Collins and Craig Ortega (AquaBlok Ltd, Toledo, Ohio);
Robert Webb and Richard May (Dalton Olmsted & Fuglevand, Inc., Poulsbo, WA);
Joe Germano, David Browning, and Ezra Beaver (Germano and Associates, Bellevue, WA);
Mark Wicklein, John Pittz, and Dwight Leisle¹
(Naval Facilities Engineering Command Northwest, Bangor, WA);
Lesley Doyle and Larry Hsu (Puget Sound Naval Shipyard & Intermediate Maintenance Facility, Bremerton, WA)

ACKNOWLEDGEMENTS

PSNS&IMF Divers; Naval Base Kitsap Port Ops; Brad Helland – Hart Crowser Inc.; Skip Simpson and crew of tug MARGARET MARY and barge ABERDEEN – Quigg Bros Inc.; Dr. Richard G. Luthy - Stanford University; and Dr. Jason Conder - ENVIRON International, Corp. Major funding was provided by the Environmental Security Technology Certification Program (ESTCP) and the Navy's Environmental Sustainability Development to Integration (NESDI) Program.

¹ Current affiliation Port of Portland, Portland, OR

Installing an Activated Carbon Sediment Amendment at the Puget Sound Naval Shipyard & Intermediate Maintenance Facility, Bremerton, WA

Why Amend with Activated Carbon?

- Less obtrusive than dredging/capping
- Focused on reducing bioavailability and mobility
- Shorten ecosystem recovery time
- Expand site management options
- Less costly and more expedient

Need Large Scale Demonstrations to Gain Acceptance

Naval Base Kitsap Bremerton, Puget Sound Naval Shipyard & IMF (Bremerton Naval Complex)

Sediment Remediation for Operable Unit B (OU B) Marine Conducted 2000-2001

Pier 7 Site Location

Bathymetry in the vicinity of Pier 7

Pier 7 Screening Analysis - Methods

Diver Collected Samples 10 cm surface cores Rapid Screening PCBs, PAHs

- ImmunoAssay

Cu, Pb, Zn

- XRF

Lab Analysis

Hg – CVAA

Grain Size Distribution

April 10		Ų			3	1	
	C1	C2	C3 1	C4	<u>C5</u>	<u>C</u> 6	ŀ
T1	0	0,	o't	O	0	The same	Part over press
T2	0	OI.	.	0	0		
T3	0	0	○ (0	0	1	
T4	0	-	0 3: 213	01	10	the tab	
T5	0	o <u>v</u>	o 	0	0	u.	A24, 100 Person
T6	0	o O		0	7 0	TEA.	THE PERSON NAMED IN
T7	0	" O "	0		0	0	CONTRACTOR OF THE PERSON
T8	0		- O	1	en a		A STATE OF THE PARTY.
Т9	0	0	o	0	o	0	
T10	0	o	0	0	0	0	

20000	Method Detection	n Limit
į	PCB (Aroclor 1254)	_
	RaPID™Assay, Stategic Diagnostics Inc.	53.5 ng/g
	PAHs (Total)	980 ng/g
	Immunoassay EPA 4035	
•	Cu XRF	48 ug/g
	Zn XRF	43 ug/g
	Pb XRF	50 ug/g
	Hg CVAA	0.005 ug/g

Google earth

Pier 7 Screening Grids Sediment PCB ng/g (ppb)

Washington State
Sediment Quality
Criteria (WA SQC)
Max Cleanup Level
(WA MCL)

Total PCBs Average TOC=3.1% WA SQC 372 ng/g WA MCL 2015 ng/g

April 10	110				-		
	C1	C2	<u>3</u>	Q4	C.5	<u>C</u> 6	
T1	234	192	91	46	152		
T2	176	151	28	261	58	一元	
T3	170	96	285	74	48	1	
T4	341	140	113	133	11	110 110	
T5	111	594	159	150	74	u u	
Т6	243	262	6650	305	439	110	
T7	224	261	129	655	193	105	
Т8	227	129	163	1			1
Т9	91	74	74	73	84	80	
T10	161	24	126	92	134	115	

Bulk Sediment
Sample Obtained
for Laboratory
Evaluation

Google earth

Pier 7 Screening Grids Sediment PAHs ug/g (ppm)

Washington State
Sediment Quality
Criteria (WA SQC)
Max Cleanup Level
(WA MCL)

Total PAHs (LPAH + HPAH)

Average TOC=3.1%

WA SQC 41 ug/g

WA MCL 188 ug/g

ing Period	04	00				
T1	25	12	9	2	5	<u>C6</u>
T2	14	8	1	8	3	
Т3	13	9	8	3	3	1
T4	11	10	7	8	3	D Sep
T5	7	11	9	10	3	, m
Т6	8	11	8	5	8	yer
T 7	9	11	8	9	4	3
Т8	10	4	4	1	er a	3
Т9	6	8	7	3	6	5
T10	8	2	6	3	0	0

47.558844° lon -122.628803° elev

Pier 7 Screening Grids Sediment Hg ug/g (ppm)

Washington State
Sediment Quality
Criteria (WA SQC)
Max Cleanup Level
(WA MCL)

Н	g	
WA SQC	0.41	ug/g
WA MCL	0.59	ug/g

						Lit	Ì
	C1	C2	C3	C4	C ₅	C 6	
T1	0	0.64	0.40	0.24	0.62		7
T2	0.52	0.20	9.1	0.70	0.17	THE REAL PROPERTY OF THE PROPE	17/4
Т3	0.43	0.11	0.73	0.19	0, 1		
T4	1.19	0.29	0.45	0.57	0.21	110 110	THE PARTY OF
T5	0.21	0.83	0.69	0.44	0.49	U e	
Т6	0.56	0.49	0.90	0.36	0.60	tra)	THE PERSON NAMED IN
T7	0.33	0.85	0.14	0.69	0.34	0.26	
T8	0.12	0.17	0.28	1		P	
T9	0.32	0.35	0.17	0.06	0.18	0.20	
T10	0.67	0.06	0.44	0.81	0.92	1.00	

47.558844° lon -122.628803° elev

Pier 7 Screening Grids Sediment Cu ug/g (ppm)

Pier 7 Screening Grids Sediment Zn ug/g (ppm)

Washington State
Sediment Quality
Criteria (WA SQC)
Max Cleanup Level
(WA MCL)

	Zn
WA SQC	410 ug/g
WA MCL	960 ug/g

April C		L.			-	11	ì
	C1	C2	C3	Ç4	C5	C6	Ì
T1	228	374	156	496	179		T. 10. 10. 10. 10.
T2	211	194	43	399	75	-	
Т3	190	364	226	123	122		The same of
T4	84	159	265	174	184	110 188	ALL PROPERTY OF
T5	279	845	413	154	112	u.	THE PARTY IN
T6	340	187	272	163	161	art)	THE PERSON NAMED IN
T7	177	169	156	237	143	117	
T8	136	95	117	1			
Т9	93	170	136	56	91	78	
T10	182	81	139	106	223	79	

Pier 7 Screening Grids Sediment Pb ug/g (ppm)

Washington State
Sediment Quality
Criteria (WA SQC)
Max Cleanup Level
(WA MCL)

F	Pb
WA SQC	450 ug/g
WA MCL	530 ug/g

		Į.				1
1 6	C1	C2	<u>C3</u>	¢ 4	C ₅	<u>C</u> 6
T1	86	121	50	224	83	1
T2	77	50	50	138	50	
Т3	91	58	104	62	50	
T4	50	78	106	88	59	the sail
T5	60	415	85	60	38	Ü,
T6	147	75	107	138	57	Hall Comment
T7	115	73	52	109	50	51
T8	66	50	53	1	d'a	
T 9	52	50	50	50	50	50
T10	64	50	52	50	50	50

Pier 7 Amended Cap Demonstration Project

Schedule

- •2011 Laboratory Evaluation Study Results Support **GO**
- **•**2012:

May 8-9 Site Recon

Aug 1 Begin Outage

Aug 1-17 Pre-placement Monitoring

Oct 9 Received AquaGate Shipment

Oct 15-19 Placement

Oct 30-31 Placement Verification

Oct 31 End Outage

- 2013
 - Jan (T=3 month) Monitoring
 - Apr (T=6 month) Monitoring
- 2014
 - Apr (T=18 month) Monitoring
- 2015
 - Sep (T=36 month) Monitoring

Remedial Action under CERCLA

Record of Decision for OU B Marine

Pre-Placement Monitoring

Establish Baseline

- SEA Ring Chambers Deployed at 10 stations for 14 Days
 - Bioaccumulation of PCBs and Hg
 Clam Macoma nasuta
 Worm Neanthes arenaceodentata
 Passive Sampler Diffusive Gradient in Thin films (DGT)
 - Toxicity
 Amphipod Eohaustorius estuarius
 - Physical, chemical and biological characterization (including TOC/Black Carbon)
- Sediment Profile Imaging (SPI) Camera at ~ 50 locations, extending beyond target footprint

SEA Ring

Pre-Placement Monitoring Cont. Sediment Profile Imaging (SPI) Camera

Sediment Profile Images

AquaGate+PACTM Composite Aggregate

Product Staging and Placement

Product Handling on Barge

Telebelt Placement System

Under Pier Placement with Telebelt System

Typical Sediment Profile from SPI camera

Before Placement

_DSC0101

After Placement

_DSC0225

Cost for Monitoring and Placement*

Monitoring (per event)						
Field Work	\$ 97,000					
Dive Support	\$ 27,000					
Laboratory Analysis	\$ 59,000					
Reporting	\$ 40,000					
	\$223,000					
Placement		cos	t/ton			
Product (140 tons)	\$ 56,000	\$	400			
Shipment	\$ 42,000	\$	300			
Staging/Delivery	\$140,000	\$	1,000			
Verification	\$ 16,000	\$	114			
	\$254,000	\$	1,814			
Placement Unit Cost						
Area Treated	0.502	acre				
Placement Cost/ft ²	\$ 11.62					

^{*} Costs do not include management, oversight, and coordination.

Summary

- Conducted full scale demonstration of AC placement in active harbor
- Verified placement in berthing and under pier areas
- Established baseline to evaluate performance
- Post placement monitoring is on going

